01.numpy中判断None和nan方法
1.None和nan表达的含义
import numpy as np
from numpy import NaN
>>> print(type(None))
<class 'NoneType'>
>>> print(type(NaN))
<class 'float'>
- 1
- 2
- 3
- 4
- 5
- 6
2. numpy中去除None和nan数值的方法
>>> import numpy as np
>>> a = np.array([1,2,3,None])
>>> a[a != np.array(None)]
array([1, 2, 3], dtype=object)
>>> from numpy import NaN
>>> b = np.array([1,2,3,NaN])
>>> b[~np.isnan(b)]
array([1., 2., 3.])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
文章知识点与官方知识档案匹配,可进一步学习相关知识
Python技能树科学计算基础软件包NumPyNumPy概述28628 人正在系统学习中
推荐阅读